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SYNOPSIS 

Swelling equations were derived for polymeric networks that consist of two swellable but 
distinct phases. These equations can be used to describe the equilibrium swelling behavior 
of certain two-phase network systems. Using physicochemical measurements of the equi- 
librium polymer volume fraction, it was possible to calculate the number-average molecular 
weight between crosslinks, using these equations. The influence of several structural 
parameters on I@, was investigated. 0 1992 John Wiley & Sons, Inc. 

INTRODUCTION 

Phase Distribution in Heterogeneous Systems 

Phase-separated systems include block and graft 
copolymer networks; two-phase laminated networks 
consisting of concentric spheres or cylinders, or 
slabs; semicrystalline polymeric networks; compos- 
ite, blend, or dispersion networks; or, finally, non- 
homogeneous networks of single polymers. Equilib- 
rium swelling analysis of heterogeneous polymer 
networks incorporates many of the original concepts 
put forth in early developments for homogeneous 
polymer networks.'f2 In all cases, the heterogeneous 
networks are treated as homogeneous networks with 
variations and constraints arising from the contact 
between dissimilar materials within an interfacial 
boundary. 

Some constraints that must be considered when 
developing swelling expressions for such systems are 
( i )  isotropic and nonisotropic swelling behavior dic- 
tated by the distribution of the domain structure 
and its lattice structure; ( i i)  the geometric confor- 
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mation and relative geometries of the domains; (iii) 
the dimensionality of swelling; ( iv ) the conforma- 
tional state of the macromolecules; and (v)  external 
constraints. In view of these considerations, it is 
necessary to reformulate the thermodynamic theo- 
ries already to account for these con- 
siderations. 

Figure 1 offers one conformation arrangement 
possible in a simple diblock copolymer network with 
spherical microdomains. It is a depiction of an ideal 
system, where the matrix (polymer A )  and spherical 
microdomains (polymer B ) are composed of poly- 
meric chains that are relatively highly cross-linked. 
Possible macromolecular chain distributions in 
block copolymer systems and other heterogeneous 
systems may lead to two incompatible phases, A and 
B, where cylinders and spheres are two geometric 
shapes that may be used to confine sections of por- 
tions of the chain for proper analysis of each section 
to the total network configuration. Other alterna- 
tives could include ( i )  uncross-linked polymer seg- 
ments within spheres; (ii) a mixture of block or graft 
copolymer with homopolymers A or B or both, which 
may include an interpenetrating network within ei- 
ther phase; (iii) block or graft copolymer consisting 
of multifunctional cross-links in the form of crys- 
tallites dispersed throughout one or the other poly- 
mer phase; or (iv) a phase composed of polymer A 
described by a Gaussian distribution, while polymer 
B is described by a non-Gaussian distribution. 
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Figure 1 
possible incompatibility of two phases A and B. 

Distribution of spherical domains indicating 

Thermodynamic Analysis 

The origin of equilibrium swollen network descrip- 
tions lies in the work of Huggins7s8 and Flory and 
Rehne~-.~.~- '~  In their work, the free energy of a cross- 
linked network swollen to equilibrium conditions 
was equal to a mixing contribution due to the swell- 
ing agent /polymer thermodynamics and a retractive 
contribution due tQ the rubber elastic behavior of 
the network. 

Several expressions for determination of molec- 
ular parameters were a result of these original con- 
cepts. For example, the equation for determining 
the number-average molecular weight between 
cross-links, A?, , for highly swollen, cross-linked 
polymer networks that were produced by a cross- 
linking reaction in the solid state was presented by 
Flory and Rehner2 as in eq. ( 1) : 

1 2  - - -  
Mc n;l, 

Here, I$" is the number-average molecular weight 
of the uncrosslinked polymer; U Z , ~ ,  the equilibrium 
swollen polymer volume fraction; 6 ,  the specific vol- 
ume of the anonylous polymer; Vl , the molar volume 
of the swelling agent; x ,  the ratio of the volume of 

a macromolecular chain to the volume of a solvent 
molecule; XI, the solvent-polymer interaction pa- 
rameter; and f ,  the functionality of the cross-links 
formed. 

The Flory-Rehner description of equilibrium 
swollen polymer networks2*" was based on the as- 
sumption that polymer chains could be modeled by 
a Gaussian distribution. This distribution usually 
requires a network system of at least 100 bond vec- 
tors between junctions or tie-points. A second as- 
sumption was that all junctions (cross-links) are 
fixed in a region about the origin with no spatial 
fluctuations or dependencies of any kind due to set 
deformations (phantom network). The idea of an 
affine network, as proposed in more recent network 
analysis4 disputes these assumptions since local 
fluctuations due to systematic forces vary in a sta- 
tistical nature from junction to junction, thus caus- 
ing small junction displacements. 

Other structural characteristics may be affected 
by the method of network preparation that has been 
shown to have a marked effect on the development. 
Peppas and Merrilll* eluded to this fact when they 
examined networks cross-linked under various con- 
ditions. A variation of the Flory-Rehner equation 
for networks prepared in solution was presented and 
a new equation for &fc was derived: 

1 2  - 

A& M ,  

In this equation, uZ,r represents the polymer volume 
fraction of the network immediately after cross- 
linking but before swelling. 

BINARY SYSTEMS WITH ONE SWELLABLE 
A N D  ONE NONSWELLABLE PHASE 

Heterogeneous networks, such as block and graft 
copolymer networks, exhibit phase separation on a 
microscopic level. This phase separation of copol- 
ymer segments into separate phases composed ex- 
clusively of the polymer of any said segment causes 
the formation of microdomain structures. 

Three types of microdomains are most commonly 
found in heterogeneous two-phase polymer net- 
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works, i.e., spherical, cylindrical, and lamellar mi- 
crodomains. Each phase is composed of a unique 
polymer that may or may not swell when exposed 
to a solvent of choice. 

Two distinct cases of binary two-phase networks 
where one of the phases does not swell have been 
considered. In the first case, the network contains 
a continuous or most abundant phase that does not 
swell in the presence of solvent. Here, networks with 
spherical microdomains do not swell since the phase 
that has a potential to swell is masked from the sol- 
vent by the nonswellable phase. When cylindrical 
and lamellar microdomains are present, the system 
parameters, such as the equilibrium polymer volume 
fraction and stresses, are calculated using an inverse 
approach of Klier and Peppas." 

In the second case, the network contains a dis- 
persed or less abundant phase that does not swell. 
Here, Treloar l6 and Klier and Peppas l5 have pre- 
sented models that fully describe swellable two- 
phase systems where the core or inner phase restricts 
the swelling behavior of the surrounding phase. In 
their work, two-phase spheres, cylinders, and slabs 
were analyzed and a methodology to predict the 
equilibrium polymer volume fraction and stresses 
was presented. Swellable, block and graft copoly- 
meric networks are also described in this manner 
where the spherical, cylindrical, or one of the la- 
mellar phases does not swell in the presence of sol- 
vent. 

MODELS FOR CONFINED 
HOMOGENEOUS NETWORKS 

In contrained swollen polymer networks, interfacial 
constraints prevent an isotropic expansion of the 
system to occur. The formulation of the equilibrium 
conditions is such that the change of the partial mo- 
lar Gibbs free energy of the solvent, AG,,  for the 
system must be zero: 

The Gibbs free energy of the solute has three con- 
tributions: the Flory-Huggins 7,8 partial molar Gibbs 
free energy due to mixing, AG1,,; the partial molar 
Gibbs free energy due to elastic contributions, AGlSe; 
and the partial molar Gibbs free energy due to in- 
terfacial contributions, A(?,,;. The term AGl,e is for- 
mulated from theories of rubberlike elasticities set 
forth by Flory and Erman,4,'7-20James and Guth,21,22 
Kovac and Crabb, 2324 and 

The term AG1,; is a function of the dimensionality 
of swelling and the geometry of the system. In a 
spherical coordinate system, AG,,; is expressed as 

(4) 

by analogy to previous work on microspheres in so- 
l ~ t i o n . ~ ' - ~ ~  Here r is the radius of the spherical mi- 
crodomain at  swelling equilibrium; y, the interfacial 
tension at  swelling equilibrium; R ,  the universal gas 
constant; and T ,  the absolute temperature. Equation 
(4) is valid for systems in contact with a solvent or 
other medium. 

A set of equations was derived to describe some 
of the cases that arise in homogeneous networks 
swollen to equilibrium with AG, equal to zero and 
under set constraints. Thus, for equilibrium swollen 
polymer networks where the network chains are held 
at  each chain end by a nonswellable boundary, the 
macromolecular chains are described by a Gaussian 
distribution, and the affine network behavior is con- 
sidered, eq. ( 4 )  can be rearranged to express the 
number-average molecular weight between cross- 
links, Mc,  as a function of system parameters. If the 
system can swell in three dimensions, i.e., for spher- 
ical domains, it can be easily shown by analogy to 
Barr-Howell and pep pa^^^ that 

The swelling equation is modified when swelling oc- 
curs in two directions, e.g., in cylindrical domains. 
Then, 
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Finally, for swelling in lamellar domains, 

1 2  - = -  
M, Mn 

( 7 )  

For macromolecular chains described by a mod- 
ified Gaussian distribution proposed by K o v a ~ , ~ ~  the 
models for equilibrium swollen constrained networks 
are modified. For example, the swelling equation for 
a system containing spherical swelling domain is: 

1 2  - = -  
Mc Mn 
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Figure 2 Number of mers per cross-linked chain, 
M n / M C ,  as a function of the equilibrium polymer volume 
fraction, u ~ . ~ ,  for swollen gels. The molar volume ratio 
G/V,Mn was 1000 and the gels were homogeneous, con- 
fined, and allowed to swell in ( 1 ) one, ( 2 )  two, or (3)  three 
dimensions. 
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Figure 3 Number of mers per cross-linked chain, 
M n / M c ,  as a function of the equilibrium polymer volume 
fraction, I J ~ , ~ ,  for swollen gels. The molar volume ratio 
V/V,M, was 3000 and the gels were homogeneous, con- 
fined, and allowed to swell in ( 1 ) one, ( 2 )  two, or (3)  three 
dimensions. 

Here, 

A M ,  
M ,  

Nz- 

Similar equations can be obtained from two- and 
one-dimensional swelling. Here, M,  is the molecular 
weight of the repeating unit of the polymer segments 
found in phase A; X is the number of links per re- 
peating unit ( A  = 2 for vinyl repeating units), and 
the other parameters are as defined before. This last 
set of equations is nonlinear and will require an it- 
erative solution routine to determine the number- 
average molecular weight between cross-links, &f,. 

RESULTS AND DISCUSSION 

Calculation of Mc for heterogeneous or constrained 
homogeneous networks requires knowledge of the 
polymer volume fraction u ~ , ~ .  Once this is known, 
one of the previously developed equations can be 
used. The nature of the cross-linked system may be 
expressed either in terms of M, or in terms of its 
reciprocal value, which will be indicative of the cross- 
linking density. 

The number of mers per cross-linked chain, 
M n / M c ,  was calculated from eqs. (5)-(7)  over a 
range of equilibrium swollen polymer volume frac- 
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tions, u ~ , ~ .  This value is considered as an indication 
of the cross-linking density of the network. The re- 
sults for networks cast in the absence of a swelling 
agent or solvent, u2,s = 1, are plotted in Figures 2- 
4. The molar volume ratio, i.e., the ratio of polymer 
to solvent i / ( V I M n ) ,  was set equal to 1000, 3000, 
and 5000, respectively. 

It is evident that more cross-linked networks, 
corresponding to a relatively high M n / M ,  value, are 
associated with high equilibrium polymer volume 
fraction u ~ , ~ .  Confinement of the network structure 
and swelling in one or two directions has a significant 
influence on the equilibrium degree of swelling, Q. 
Thus, Figures 2-4 indicate that for the same value 
of an/&?,, i.e., for the same real cross-linking den- 
sity, the expected equilibrium polymer volume frac- 
tion, u ~ , ~ ,  is significantly smaller for three-dimen- 
sional swelling. Since u2,s is the reciprocal of Q, the 
conclusion is that the three-dimensional swelling 
behavior will give the highest degree of swelling for 
the same M,. 

However, this overall swelling behavior becomes 
much less important as the gel becomes more loosely 
cross-linked. Indeed, all three figures indicate that 
for smaller than 0.1 (corresponding to swelling 
ratio, Q, greater than 10) the dimensionality of 
swelling is not important. 
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Figure 4 Number of mers per cross-linked chain, 
an/&&, as a function of the equilibrium polymer volume 
fraction, u ~ , ~ ,  for swollen gels. The molar volume ratio 
V/Vlh&, was 5000 and the gels were homogeneous, con- 
fined, and allowed to swell in ( 1 ) one, ( 2 )  two, or ( 3 )  three 
dimensions. 
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Figure 5 Number of mers per cross-linked chain, 
M,,/Mc, as a function of the equilibrium polymer volume 
fraction, u ~ , ~ ,  for homogeneous, confined, swollen gels, al- 
lowed to swell in three dimensions. The molar volume 
ratio V/VIM, was (curve 1) 1,000, (curve 2) 3,000, or 
(curve 3)  5,000. 

Figure 5 depicts the results of constrained net- 
works swollen in three dimensions for various molar 
ratios. A denser cross-linked structure is predicted 
for networks with larger molar volume ratios. 

These results indicate that the network param- 
eters are dependent on the dimensionality of swell- 
ing and the ratio of the volume of the polymer before 
cross-linking to the swelling agent. 

CONCLUSIONS 

In conclusion, previously developed swelling equa- 
tions have been extended to analyze heterogeneous 
and confined homogeneous networks. It is particu- 
larly noteworthy that the geometric shape of the 
confined structure leads to a different forum of the 
swelling equation. 

This work was supported by a National Science Foun- 
dation Grant CBT No. 87-14653. 
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